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Handling categorical variables in
predictive modelling can be
challenging.

They require numerical encodings
to be included in a model, e.g.,
dummy variables or one-hot
encoding.

Categorical variables can have an
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Introduction 4
Motivation

Hierarchical categorical variables often
exhibit high dimensionality and high
granularity, leading to overfitting and
estimation issues.

Commonly, random effects are utilised, see
e.g. random effects entity embedding
[Richman and Wüthrich 2024].

By construction, random effects do not
allow classes having the same effect on the
response variable.
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Literature

Antonio and Campo [2023] apply feature
engineering to construct a risk profile for
each class and merge classes within a given
level based on that risk profile. They do
not allow for the partial collapse of a level.

Carrizosa et al. [2022] introduce the tree
based linear regression model (TLR),
which allows for the collapse of descendant
classes by balancing the predictive
accuracy and complexity of the model.
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Objective

Develop a methodology to reduce both the
within-level dimensionality as well as the
overall granularity of a hierarchical
categorical variable by:

1. learning embedding vectors for every
class at each level in the hierarchy,
and

2. proposing a clustering algorithm that
leverages the information encoded in
the embeddings to reduce the
hierarchy.
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Hierarchical categorical variable
h = (h1, . . , hR) with R levels,
where hr ∈ Hr = {hr ,1, . . , hr ,nr }
is a (non-hierarchical) categorical
variable.

Assume a dataset
D = (yi ,hi , x i )

n
i=1 of n

observations.

We want to learn h̃ = (h̃1, . . , h̃R̃)

with R̃ ≤ R levels, where we
have that ñr ≤ nr ∀ r = 1, . . , R̃.

r = 1

r = 2
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Embedding a hierarchy

To embed the hierarchy for

1. r = R: we learn a feedforward neural
network and apply entity embedding
[Guo and Berkhahn 2016] to hR .

2. r = 1. . ,R − 1: we average the
embeddings over the hierarchical
structure:

er ,s =
1

dim(Hr,s)

∑
l |hr+1,l∈Hr,s

er+1,l

∀ r = 1, . . ,R − 1, ∀ s = 1, . . , nr .

x

. . . ŷ
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Reducing a hierarchy

We propose a top-down clustering
algorithm that for a given level r

1. merges similar classes within level
r , and

2. collapses descendant classes on
level r + 1 that are sufficiently
close in the embedding space
with their parent class on level r .

Both steps are repeated for every level
in the hierarchy, starting from r = 1.
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Reducing a hierarchy

Each step consists of multiple clustering tasks. For
each clustering task,

1. we apply the k-medoids algorithm [Kaufman
and Rousseeuw 2009] to a set of embeddings
corresponding to a subset of classes, and

2. use the silhouette index [Vendramin et al. 2010]
as a cluster validation metric to determine the
number of clusters.

Higher value tuning parameter SI ∗ results in more
reduced hierarchical structure.
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Simulation experiments 11
Balanced

We simulate

1. a hierarchical categorical variable h,

2. additional covariate vector
x = (x1, x2, x3) where x1 = sin(a1)
with a1 ∼ U(0, 5), x2 ∼ N(0, 1) and
x3 = a23 with a3 ∼ U(1, 2), and

3. a response variable y .

Classes represented using the same colour
are simulated to have the same effect on
the response.
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Balanced

We consider the case where

1. only h has an effect on y ,

2. both h and x have an effect, and

3. the case where both h and x have no
effect.

For all three cases, we simulate normally
distributed data as well as Poisson data.

For each experiment, 100 datasets
consisting of 1000 observations of each
class at the lowest level in the hierarchy,
i.e. hR , are simulated.
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Simulation experiments 14
Balanced - methodology

We set the embedding dimension
qe = 2 to visualise the embedding
space.

To learn the embedding vectors, we
use a network with a single hidden
layer consisting of two neurons.

The activation function in the output
layer is the identity function or the
exponential function for normal and
Poisson data, respectively.
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Simulation experiments 15
Balanced - results

Most of time, the true structure
is retrieved. If not, the retrieved
structure closely resembles the
true structure.

Slightly better performance on
the Poisson data.

Higher number of different
structures retrieved in case there
is no effect of h on the response.

True structure retrieved Different structures

Normal distribution
h no effect 96.6% 9
h with effect 90.4% 8
h and x with effect 92.8% 8

Poisson distribution
h no effect 92.6% 19
h with effect 97.4% 2
h and x with effect 99% 2
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Simulation experiments 17
Unbalanced - results

Less observations decreases
the number of times the
true structure is retrieved
and increases the number of
different structures.

Overall, even when the
number of observations is
decreased, the retrieved
structures still closely
resemble the true structure.

Number of observations in each class of hR
50-100 50-150 50-200 50-250

True structure retrieved 43.2% 52.8% 60.8% 68.4%
Different structures 51 32 39 27

AIC (h̃) < AIC (h) 99.4% 100% 100% 100%

BIC (h̃) < BIC (h) 100% 100% 100% 100%

h̃1,1 h̃1,2

h̃2,1 h̃2,2 h̃2,3 h̃2,4

h̃3,1 h̃3,2 h̃3,3

h̃3,4

h̃3,5
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cancer reg dataset used by
Carrizosa et al. [2022] consisting
of 3047 observations including
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We standardise the non-hierarchical
continuous predictors.

We exclude the variables
pctsomecol18 24, pctemployed16 over

and pctprivatecoveragealone due to
missing values.
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We consider a grid of possible values for the
tuning parameter SI ∗.

BIC indicates a simpler representation of the
hierarchical categorical variable compared to
the AIC .

Our methodology improves the model fit over
the original structure and outperforms the
solution provided by Carrizosa et al. [2022].

AIC BIC

h 6087.80 6617.73

SI ∗ 0.1 6074.261 6363.31
0.3 6074.261 6363.31
0.5 6075.01 6352.02
0.7 6449.19 6678.03

Carrizosa AIC 6083.19 6570.96
Carrizosa BIC 6169.04 6476.15
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We propose a novel methodology relying on entity embeddings and clustering techniques
to reduce the dimensionality and granularity of a hierarchical categorical variable.

The resulting reduced hierarchical structure can be incorporated in any type of predictive
model.

Using simulated data, we find that our methodology can effectively approximate the true
underlying structure with respect to a response variable.

We verify our approach on a real dataset and show that it outperforms existing solutions.
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