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Literature Review



MSM have found widespread use in the domain of life insurance ( ).

Example of MSM for modeling biometric states (active, deceased).
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The development triangle of reporting delays

stems from the i.i.d. data :

 accident date.

 the delay between accident and report.

 denoting the total claims
reported in accident period  with delay .
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A MSM for individual claims
reserving



Example of multi-state model for claims reserving, with .

We model based on a continuous-time non-explosive pure jump process denoted by  on a
finite state space, , . States correspond to the development periods
(DP’s) within a development triangle, and the “time spent” between state transitions
corresponds to the claim size growth between DP’s.

J

S = {1, … , k} k ∈ N

k = 5



Example of multi-state model for claims reserving, with .k = 5

We introduce a strictly positive random variable  describing right-censoring. We are
interested the triplet

W

(X, , Y ∧ W) .( )Jz 0⩽z⩽W

We denote by  the possibly infinite absorption time of , and  the state occupied by  in .Y J Jz j z

For any  in the support of  we model the conditional occupation probabilitiesx X

(z ∣ x) = E [I({ = k}) ∣ X = x] .pk Jz



Our sample is constituted of the i.i.d. replicates

Define
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Our sample is constituted of the i.i.d. replicates

Define

, which equals  when the observation is absorbed (closed claim).
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Our sample is constituted of the i.i.d. replicates

Define

, which equals  when the observation is absorbed (closed claim).

Under certain regulatory conditions ( ), we derive the conditional
Aalen-Johansen estimator

where , and  is the conditional Nelson-Aalen estimator
for cumulative hazard Bladt and Furrer ( ). We denote the product integral with .
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:= I( ≤ )δi Y i W i 1

n = +nClosed nRBNS
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(z ∣ x) = (0 ∣ x) (Id + (ds ∣ x)) ,p(n) p(n) Πz Λ(n)
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(n)
j I

(n)
j (ds ∣ x)Λ(n)

2023 Π



Predictors
We are presently interested in predicting the ultimate cost of our claims,
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The predictor of the final total cost of RBNS claims is defined by
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Predictors
We are presently interested in predicting the ultimate cost of our claims,

The predictor of the final total cost of RBNS claims is defined by

The general formula for predicting the -th moment is explicitly given by
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A model for IBNR claims



We describe the total cost of IBNR claims with the collective risk model in (
):

Klugman, Panjer,
and Willmot 2012, 715:Ch.9
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We describe the total cost of IBNR claims with the collective risk model in (
):

The expected cost of IBNR claims is estimated by

with the -th moment of  estimated, using the unconditional Aalen-Johansen, by
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~m ∫

∞

0

ym−1 p
(n)
k



We describe the total cost of IBNR claims with the collective risk model in (
):

The expected cost of IBNR claims is estimated by

with the -th moment of  estimated, using the unconditional Aalen-Johansen, by

We calibrate the Mack Chain-Ladder estimator on  for .

The total size of claims is  and we estimate it with

.

Klugman, Panjer,
and Willmot 2012, 715:Ch.9
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A data application on an insurance
portfolio



A real data set from a Danish insurance company.

Covariates Description

Claim_number Policy identifier

claim_type Type of claim

AM Accident month

CM Calendar month of report

DM Development month

incPaid Incremental paid amount

Delta Indicator,  when the claim is open

∈ {1, … , 20}

0



Frequency by claim_type.



Frequency by claim_type. Distribution of the number of payments.



Frequency by claim_type. Distribution of the number of payments.



Frequency by claim_type. Distribution of the number of payments.



Model comparison on different
datasets



Model strategy:

1. We cut our time-serie at different depths ( ).k = 4, 5, 6, 7
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Model strategy:

1. We cut our time-serie at different depths ( ).

2. We define two performance metrics (next slide).

3. For the different choices of  compare:

Our model (AJ) conditioning on the feature claim_type.

Our model (AJ) without conditioning on the feature claim_type.

The Chain-Ladder model (CL, ).

k = 4, 5, 6, 7

k

Mack 1993



The (average) Continuously Ranked Probability Score (CRPS, Gneiting and Ra�ery ( )).2007

CRPS( (z ∣ x), y) = ( (z ∣ x) − dzp
(n)
k ∫

+∞

0

p
(n)
k 1{y≤z})2



The (average) Continuously Ranked Probability Score (CRPS, Gneiting and Ra�ery ( )).

The error incidence,

2007

EI = − 1.
Ŷ

TOT

Y TOT



Models comparison for 

claim_type
(AJ) (CL)

 (AJ) (CL) CRPS

4 ✔ 616.1327 0.0035 0.0157 0.0029 0.0023 1.0000

✖ -0.0029 0.0029 1.1403

5 ✔ 822.5956 0.0064 0.0209 0.0008 0.0024 1.0000

✖ -0.0061 0.0007 0.4596

6 ✔ 999.6005 0.0059 0.0173 0.0017 0.0017 1.0000

✖ -0.0052 0.0017 0.9987

7 ✔ 1190.9112 0.0146 0.0144 0.0011 0.0017 1.0000

✖ -0.0142 0.0011 1.0022

k = 4, 5, 6, 7

k Y
TOT EITOT EITOT ( )/√Var^ Y

TOT
Ŷ

TOT

( )/√Var^ Y
TOT

Ŷ
TOT
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claim_type
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Notes on the computation of 

We compute numerically the AJ estimator for the standard deviation,

as sum of the individual variability.

In the CL case, we use the Mack estimator for the process variance.

k = 4, 5, 6, 7

k Y
TOT EITOT EITOT ( )/√Var^ Y

TOT
Ŷ

TOT

( )/√Var^ Y
TOT

Ŷ
TOT

Var( )Y TOTˆ

= + ,Var( )Y
TOTˆ Var( )Y

RBNSˆ Var( )Y
IBNRˆ



An individual model for the claim
size



Figure 1: Severity curve for a k=4.



Figure 2: Severity curve for a k=5.



Figure 3: Severity curve for a k=6.



Figure 4: Severity curve for a k=7.



Model comparison on a single
dataset



Model strategy:

1. We cut our time-serie at maximum of  calendar periods.5



Model strategy:

1. We cut our time-serie at maximum of  calendar periods.

2. We compare, using CRPS and :

The AJ model conditioning on the feature claim_type for .

The AJ model without conditioning on the feature claim_type for .

The Chain-Ladder model (CL, ).

5

EI

k = 4, 5, 6

k = 4, 5, 6

Mack 1993



Results for the data set with .

claim_type  (AJ) (CL) (AJ) CRPS (average,
relative)

4 ✖ -0.0059 0.0016 1.0143

✔ -0.0040 0.0020 1.0000

5 ✖ -0.0069 0.0015 0.9916

✔ -0.0052 0.0018 1.0000

6 ✖ -0.0052 0.0017 0.9987

✔ -0.0059 0.0017 1.0000

 (Actual, millions).

 (CL).

 (CL).

Using the CRPS we can select the model with features for :

Claims reserve  millions.

Standard Deviation  millions.

k = 6

k EI ( )/√Var^ Y
TOT

Ŷ
TOT

= 999.6005Y
TOT

( )/ = 0.0017√Var^ Y
TOT

Ŷ
TOT

EI = 0.0173

k = 4

1.485

2.0385



Replicable results



Replication material can be found in our .

gpitt71/conditional-aj-reserving folder ReadME.md.

GitHub folder

https://github.com/gpitt71/conditional-aj-reserving


Replication material can be found in our .GitHub folder

 AalenJohansen for the conditional Aalen-Johansen estimation is available
on CRAN.
The R package

AalenJohansen package vignette.

https://github.com/gpitt71/conditional-aj-reserving
https://cran.r-project.org/web/packages/AalenJohansen/index.html


Thank you for your attention!
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