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Objective & problematic

Objective: use Variational AutoEncoders (VAEs) to reduce the
input dimension and to generate new synthetic policies.

Challenge: VAEs were initially designed (Kingma & Welling, 2013)
to model continuous data.

Problematic: how to adapt the VAE architecture to insurance
datasets containing categorical (ordinal, nominal) and continuous
variables with a variety of marginal distributions (multi-modal,
long-tail, . . . )?
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Variational AutoEncoder architecture
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Figure 1: Architecture of VAE with Gaussian prior.
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Categorical data

How to deal with categorical data?
• we opted for the use of one-hot encoding

Policy Vehicle color
1 Black
2 Black
3 Red
.
.
.

.

.

.
N Gray

→

Policy Black Red Gray
1 1 0 0
2 1 0 0
3 0 1 0
.
.
.

.

.

.
.
.
.

.

.

.
N 0 0 1

Table 1: Example of one-hot encoding with categorical variable color
∈ {Black,Red ,Gray}

• entity embeddings (Guo & Berkhahn, 2016; Delong & Kozak,
2023) addresses the lack of semantic significance

• takes the detour of an ordinal or one-hot encoding
• first layer of VAE similar to an embedding layer

• vector quantization via codebooks (Van Den Oord et al.,
2017) focuses on the scalability issue and generalizes well to
unseen categories

• additional complexity
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Continuous data

How to deal with continuous data?
• challenging with multi-modal non-Gaussian distributions and

the mode-seeking behavior of the KL divergence used to train
the model:

−DKL (qϕ (z |x) ||pθ(z)) + ln pθ (z |x)

• collapse of the posterior towards a single mode
• biased generation of samples towards this (↑) specific mode

Solutions?
• mode-specific normalization using Gaussian mixture

models (Bishop & Nasrabadi, 2006)
• increases the input dimension by the nb of Gaussians used to

approximate the variable distribution

• we propose a quantile transformation
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Quantile transformation

Quantile transformer Φ−1 (F (X ))

If X is a random variable with a continuous CDF F then U = F (X )
is uniformly distributed on [0, 1]. If U ∼ U(0, 1), then
Φ−1(U) = Φ−1 (F (X )) has distribution Φ.

In practise,
• applied on each feature X independently
• CDF of X , F (X ) = P (X ≤ x), estimated using a reference set

of quantiles and an estimation of the data percentiles and CDF
• apply F−1 (X ) to map the feature values to U(0, 1) using the

estimated percentiles
• use Φ−1 to map u to the desired output distribution
Φ = N (0, 1)
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Quantile transformation

Figure 2: Continuous variables before and after quantile transformation.
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Impact of Φ−1 (F (X )) on X̂

Figure 3: Reconstructed continuous variables, with(out) the quantile
transformation pre-processing step.
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Heterogeneous loss and activation functions

• softmax loss for the categorical variables with Ck modalities

ln p (x|z) =
#cat∑
k=1

Ck∑
j=1

xj ln yj (z)

where yj (z) are the outputs of the decoder network:

y (z) = softmax(W 2hx + b2)

• mean square error for the continuous variables

ln p (x|z) =
#cont∑
j=1

∥xj − yj (z) ∥2

where yj (z) are the outputs of the decoder network:

y (z) = tanh(W 2hx + b2)
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Architecture
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Figure 4: Illustration of the slicing technique applied on the decoder
output of the Variational AutoEncoder with two categorical variables
Colour and Gender whose categories Red (R), Black (B), White (W),
and Female (F), Male (M), are dummy encoded. The darker nodes
represent continuous variables.
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Synthetic policies generation

How to generate synthetic policies?
• sample from p(z) ∼ N (0, I )
• apply inverse Φ−1 (F (Z (true)

))
• dθ (z

new )

Figure 5: Densities of the d = 15 latent variables, before and after
quantile transformation.
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Impact of Φ−1 (F (X )) on X̂ synthetic

Figure 6: Synthetic continuous variables, with(out) the quantile
transformation pre-processing step.
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Synthetic data quality

Can the synthetic insurance portfolio replace the original portfolio
in actuarial analyses?

DPoisson = 2
n∑

i=1

Ni

(
νi
Ni

λ̂i −

(
log

λ̂iνi
Ni

+ 1

)
1{Ni≥1}

)
GLM trained on the original/synthetic/reconstructed insurance
portfolio and used to predict the original policies claim frequencies:

Poisson deviance %
Original data 5 691.01
Synthetic data 5 961.84 4.76%

Reconstructed data 5 713.09 0.39%

Check for duplicates:
• 2.55% of the synthetic policies are duplicate
• 1.82% of the synthetic policies (duplicates excluded) are copies

of the original policies
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Thank you!
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