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Motivation

▶ Measures of explained variations are useful in scientific
research, as they quantify the amount of variation in an
outcome variable of interest that is explained by one or more
other variables.

▶ This information helps us understand the ’quality’ of a
dataset, before training any model.

▶ Hoessjer et al. (2009) estimate the proportion of total
variation explained by a Poisson regression model for claim
counts.

▶ However, past works rely on regression-based quantification of
the explained variance.
In this talk, we want to present a non-parametric
quantification method.



Notation and setting

▶ We assume that the quantity of interest Y is linked to the
covariates as

Y = f (X) = f (X1,X2, ...,Xd).

▶ Let us denote Xu = {Xi : i ∈ u}.
For example, X{3,4,6} = (X3,X4,X6).



Relationship to variance decomposition

Variance decomposition of Y = f (X):

Var(f (X)) = Var [E (f (X)|X)] + E [Var (f (X)|X)] (1)

where Var [E (f (X)|X)] is called the regression variance and
E [Var (f (X)|X)] the residual variance.

Green (1993) writes that “In analyzing a regression, we shall
usually be interested in which of the two parts ot the total variance
Var(Y ) is the larger one. [...] A natural measure is the ratio

coefficient of determination =
regression variance

total variance
.”



Total sensitivity index

We consider the total importance index from global sensitivity
analysis (Homma and Saltelli, 1996). Total effect of group u is

Tu =
E [Var (f (X)|X−u)]

Var (f (X))
=

E
[
(E (f (X)|X−u)− f (X))2

]
Var (f (X))

.

In words, it is the expected variance that would be left if all factors
but Xu could be fixed.

By symmetry, the total effect of group −u = {1, 2, ..., d} \ u is

T−u =
E [Var (f (X)|Xu)]

Var (f (X))
.



Given data setting

▶ However, we have available a dataset {(yi , xi ,k)}, with
i = 1, 2, ..., n and k = 1, 2, ..., d .

▶ We don’t want to estimate any metamodel f̂ because it will
mediate the effect of covariates, and its accuracy will affect
the variance of the output explained by the covariates.

▶ Hence, we want a non-parametric way to estimate the
unexplained variations .

From now on, denote with XOBS the set of observed variables, and
with XUNOBS the set of unobserved variables, so that

X = (XOBS ,XUNOBS).

Hence,

TUNOBS =
E [Var (Y |XOBS)]

Var (Y )
.



Example

Consider the linear model

Y = β1X1 + β2X2 + ...+ βdXd + βd+1Xd+1

where all Xi ’s are iid standard normal distributions. Assume that
the variable Xd+1 is not observed.

The variance explained by the model is TOBS =
∑d

j=1 β
2
j /Var(Y )

and equivalently TOBS = R2 where R2 is the goodeness-of-fit
index for linear models.

Consequently, TUNOBS = β2
d+1/Var(Y ) = 1− R2 is the fraction of

the variance unexplained by the linear model.



Properties

As Honerkamp-Smith and Xu (2016) write, the measures for
explained variations can be seen as a squared rank correlation.
Kendall and Gibbons (1990) consider three properties for these
rank correlations. Equivalently, measures of unexplained variations
should:

1. lie between 0 and 1.

2. decrease with the strength of the association

3. have value 1 if there is no association, and value 0 if there is
perfect association.

We can prove that the estimator TUNOBS satisfies all three
properties.

Proposition
The index TUNOBS is bounded by 0 ≤ TUNOBS ≤ 1. Moreover,
TUNOBS decreases (increases, respectively) as the variance
explained by XOBS increases (decreases, respectively).



Computational algorithm: the fully observed cohorts

Consider a target observation t with t = 1, 2, ..., n. Define the set
Ct,u as

Ct,u = {i = 1, 2, ..., n | z(xi ,j , xt,j) = 1 for j ∈ u} (2)

where z(xi ,j , xt,j) = 1 if |xi ,j − xt,j | ≤ δj , 0 otherwise.
Precisely, Ct,u is the set of observations whose values in variables
indexed by u are similar to those of the target observation t.
Mase et al. (2019) call Ct,u the cohort of subject t for variables u.

We define the fully observed cohort for subject t as

Ct,OBS = {i = 1, 2, ..., n | z(xi ,j , xt,j) = 1 for every observed j} .



If we compute the mean of the fully observed cohort of t, we get

y t,OBS =
1

|Ct,OBS |
∑

i∈Ct,OBS

yi .

This empirical mean is an estimate of

E (Y |Xt,OBS = xt,OBS) = E (Y |Xt,−UNOBS = xt,−UNOBS) .

Averaging over all subjects, the total importance of unobserved
variables can be estimated by

T̂UNOBS =
1
n

∑n
t=1

(
y t,OBS − yt

)2
σ̂2

.



Numerical simulation: linear model

Consider the model Y = X1 + 2X2 + 3X3 with all Xi standard
normal distributed.



Numerical simulation: Ishigami function

Consider the Ishigami model Y = 7 sin(X2)
2 + sin(X1)(1 + 0.1X 4

3 )
with X1,X2,X3 ∼ U(−π, π).



Application: Medical malpractice insurance costs dataset

▶ This dataset comprises 4558 insurance losses resulting from
medical malpractice cases in various hospitals in Lombardy,
Italy.

▶ Six risk factors: hospital code, medical department, type of
claim, total number of hospitalizations, year of the claim, and
the Case Mix Index (CMI), which represents a hospital’s
patient mix.

▶ AIM: claim amounts explained by the aforementioned risk
factors.

▶ The code executed in 0.48 seconds, and the result is
T̂UNOBS = 0.5043.



Application: Global Health Observatory life expectancy

▶ This dataset contains 1649 complete observations of life
expectancy and various health and economic variables for 193
countries.

▶ twenty-one explanatory variables: Country, year, Country
status (developed or developing), adult mortality rates, infant
deaths, alcohol consumption, health expenditure, hepatitis B
coverage immunization, number of measles, population BMI,
deaths under five years, polio immunization coverage,
government expenditure on health, diphtheria immunization
coverage, HIV, Country GDP, Country population, prevalence
of thinness for Age 10 to 19, prevalence of thinness for Age 5
to 9, human development index, and the number of years of
schooling.

▶ The Quality of Interest (QoI) is the life expectancy in years.

▶ From this dataset, the estimated unexplained variation in life
expectancy is T̂UNOBS = 0.0013, computed in 0.332 seconds.



Application to four insurance datasets

▶ Australian auto claims dataset: there are 67856 policies. The
variables are related to the vehicle (age, type, value) and to
the policyholder (age, area, gender).

▶ Singapore auto claims dataset: this dataset contains 7483
observations. The variables include vehicle variables ( type of
vehicle, age and if it is private or not), as well as person
policyholder variables, such as age, gender and prior accident
record.

▶ French auto claims dataset: it contains the claim frequency
for 677,991 policyholders. The observed variables describe the
vehicle characteristics (power, age, brand and engine type -
gas/diesel/regular) plus characteristics of the policyholder
(age, bonus-malus class, typology of the living area, density of
inhabitants, region in France).



▶ Telematics auto claims dataset: it contains the observed claim
frequency for 100,000 policyholders with traditional and
telematics observed variables:
▶ Traditional variables: policyholder’s characteristics (age,

gender, marital status, credit score, region type, expected
annual driven miles, number of years without claims) and
vehicle features (age, type of use, territorial location);

▶ Telematics variables: annualized percentage of time on the
road, total distance driven in miles, percent of driving day
mon/tue/. . . /sun, percent vehicle driven within
2hrs/3hrs/4hrs, percent vehicle driven during wkday/wkend,
percent of driving during xx rush hours: am/pm, mean number
of days used per week, number of sudden acceleration
6/8/9/. . . /14 mph/s per 1000 miles, number of sudden brakes
6/8/9/. . . /14 mph/s per 1000 miles, number of left turn per
1000 miles with intensity 08/09/10/11/12, number of right
turn per 1000 miles with intensity 08/09/10/11/12.



Results

Dataset Obs Sec Variables T̂UNOBS

Australian 67856 128.87 6 0.9608

Singapore 7483 0.98 6 0.9493

French 678013 19528.61 9 0.3739

Telematics (traditional) 100000 529.75 10 0.1781

Telematics (only telem.) 100000 1921.96 39 0.0241

Telematics (all variab.) 100000 2151.33 49 0.0043

▶ The computational time is more influence by the number of
observations in the dataset rather than the number of
explanatory variables.

▶ The number of observations seems not to affect the explained
variance (see Australia vs Singapore).

▶ The introduction of telematics variables decreases the
unexplained variance.



Conclusions

▶ We have considered the problem of estimating the variance
explained by covariates in a non-parametric setting.

▶ With this insight we can quantify the ”value” and ”quality” of
the dataset.

▶ Concerning the actuarial application, our results on four
insurance dataset show that telematics data contain much
more information than traditional insurance datasets, and we
have quantified this increase.

▶ Future research: on this notion and on the computational
scaling to the big data setting.


