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Myths Around 
Insurance modeling
Statistics are there for a reason...

1.



▪ Data follows Poisson / overdispersed Poisson / Gamma 
distributions

▪ There are well defined quantities we can always compute
□ mean 
□ standard deviation 
□ skewness 

▪ Data is stationary (i.e. The rate at which events occur is 
constant)

▪ Events are independent (i.e. The occurrence of one event 
does not affect the probability that a second event will 
occur

▪ Pooling solves the issues



The mean is 
meaningless

2.



In Insurance only two 
types of clients matter

❏ Clients that never claims
❏ Clients with large claims



By focusing on the extremes we can better 
model the important factors 



Imbalance 
Datasets

3.



Techniques to handle imbalance data

SMOTE + Tomek



GANs
Generative Adversarial Networks
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GANs



GANs were very effective for images, but how about
tabular data?



Conditional GAN



Conditional GAN



CycleGAN

Horse     Zebra

or ...

No Claim      Claim



CycleGAN for fraud detection + sparse 
Autoencoders



Topology preserving CycleGAN



Results

Precision Recall F1-score

No augmentation 0.88 0.77 0.79

SMOTE 0.94 0.79 0.85

ADASYNE 0.79 0.76 0.77

cGAN 0.90 0.85 0.87

cycleGAN 0.92 0.83 0.87



Implementation Details

▪ Data has to be converted into a dense representation 

▪ Domains have to be consistently related - retain same semantic 
features.

▪ Loads of tricks (weight clipping, regularizers, training schedule)

▪ Consistency over time (i.e. stationary) 

▪ Avoid mode collapsing

▪ Diversity enforcing with conditional batch normalization and noise



How to train GANs

▪ Small (decreasing) learning rate

▪ Different optimizers for encoder and generator

▪ Train generator multiple times for each discriminator

▪ Batch normalization and Instance Batch Normalization



Conclusions:

▪ Focus on the extremes (less data, better results)

▪ Use augmentation to alleviate imbalance data 

▪ GANS can be effective under some conditions 


